skip to main content


Search for: All records

Creators/Authors contains: "Dedon, Liv R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The effects of growth conditions on the chemistry, structure, electrical leakage, dielectric response, and ferroelectric behavior of Ba 1−x TiO y thin films are explored. Although single-phase, coherently-strained films are produced in all cases, small variations in the laser fluence during pulsed-laser deposition growth result in films with chemistries ranging from BaTiO 3 to Ba 0.93 TiO 2.87 . As the laser fluence increases, the films become more barium deficient and the out-of-plane lattice parameter expands (as much as 5.4% beyond the expected value for Ba 0.93 TiO 2.87 films). Stoichiometric BaTiO 3 films are found to be three orders of magnitude more conducting than Ba 0.93 TiO 2.87 films and the barium-deficient films exhibit smaller low-field permittivity, lower loss tangents, and higher dielectric maximum temperatures. Although large polarization is observed in all cases, large built-in potentials (shifted loops) and hysteresis-loop pinching are present in barium-deficient films – suggesting the presence of defect dipoles. The effects of these defect dipoles on ferroelectric hysteresis are studied using first-order reversal curves. Temperature-dependent current–voltage and deep-level transient spectroscopy studies reveal at least two defect states, which grow in concentration with increasing deficiency of both barium and oxygen, at ∼0.4 eV and ∼1.2 eV above the valence band edge, which are attributed to defect–dipole complexes and defect states, respectively. The defect states can also be removed via ex post facto processing. Such work to understand and control defects in this important material could provide a pathway to enable better control over its properties and highlight new avenues to manipulate functions in these complex materials. 
    more » « less
  2. Abstract

    Deterministic control of the intrinsic polarization state of ferroelectric thin films is essential for device applications. Independently of the well‐established role of electrostatic boundary conditions and epitaxial strain, the importance of growth temperature as a tool to stabilize a target polarization state during thin film growth is shown here. Full control of the intrinsic polarization orientation of PbTiO3thin films is demonstrated—from monodomain up, through polydomain, to monodomain down as imaged by piezoresponse force microscopy—using changes in the film growth temperature. X‐ray diffraction and scanning transmission electron microscopy reveal a variation ofc‐axis related to out‐of‐plane strain gradients. These measurements, supported by Ginzburg–Landau–Devonshire free energy calculations and Rutherford backscattering spectroscopy, point to a defect mediated polarization gradient initiated by a temperature dependent effective built‐in field during growth, allowing polarization control not only under specific growth conditions, but ex‐situ, for subsequent processing and device applications.

     
    more » « less
  3. Abstract

    Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.

     
    more » « less
  4. Abstract

    Despite continued interest in the multiferroic BiFeO3for a diverse range of applications, use of this material is limited by its poor electrical leakage. This work demonstrates some of the most resistive BiFeO3thin films reported to date via defect engineering achieved via high‐energy ion bombardment. High leakage in as‐grown BiFeO3thin films is shown to be due to the presence of moderately shallow isolated trap states, which form during growth. Ion bombardment is shown to be an effective way to reduce this free carrier transport (by up to ≈4 orders of magnitude) by trapping the charge carriers in bombardment‐induced, deep‐lying defect complexes and clusters. The ion bombardment is also found to give rise to an increased resistance to switching as a result of an increase in defect concentration. This study demonstrates a systematic ion‐dose‐dependent increase in the coercivity, extension of the defect‐related creep regime, increase in the pinning activation energy, decrease in the switching speed, and broadening of the field distribution of switching. Ultimately, the use of such defect‐engineering routes to control materials will require identification of an optimum range of ion dosage to achieve maximum enhancement in resistivity with minimum impact on ferroelectric switching.

     
    more » « less
  5. Abstract

    Solid‐oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure–property relationships that would enable the rational design of better materials. Here, using epitaxial thin‐film growth, synchrotron radiation, impedance spectroscopy, and density‐functional theory, the impact of structural parameters (i.e., unit‐cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9Sr0.1Ga0.95Mg0.05O3–δ. As compared to the zero‐strain state, compressive strain reduces the unit‐cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit‐cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit‐cell volumes and octahedral rotations decrease migration barriers and create low‐energy migration pathways, respectively. The desired combination of large unit‐cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit‐cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion‐conducting perovskite electrolytes.

     
    more » « less